Department of Physics and Astronomy
  • Home
  • Transfer-free and printable graphene/ZnO-nanoparticle nanohybrid photodetectors with high performance

Transfer-free and printable graphene/ZnO-nanoparticle nanohybrid photodetectors with high performance


Combining the high mobility of graphene and surface electron depletion effect of zinc oxide nanoparticles (ZnO-NPs), graphene/ZnO-NP nanohybrids can be anticipated for significantly enhanced photoresponsivity and photoconductive gain in optoelectronics. Herein, a transfer-free and printable method was developed for the fabrication of wafer-size graphene/ZnO-NP nanohybrids for high-performance UV photodetectors. These photodetectors achieved the extraordinary photoresponsivity of up to 1000 A W (1) V (1) and high gain of 1.8 x 10(4), representing more than an order of magnitude improvement compared to that of previously reported UV photodetectors based on various ZnO nanostructures and transferred-graphene/ZnO nanohybrids. Our method provides a low-cost pathway for the run-to-run wafer-size fabrication of high-performance graphene/ZnO optoelectronics.


One of 34 U.S. public institutions in the prestigious Association of American Universities
44 nationally ranked graduate programs.
—U.S. News & World Report
Top 50 nationwide for size of library collection.
—ALA
5th nationwide for service to veterans —"Best for Vets: Colleges," Military Times
KU Today